Answer:
![f(x)=x^2-6x+5](https://img.qammunity.org/2021/formulas/mathematics/high-school/tqsesi2boohp9wvbwueppltwx4a6ul5nek.png)
Explanation:
The general form of quadratic function is
.... (1)
It is given that the function defined by the points (0, 5), (5, 0), and (3, −4). It means the function must be satisfied by these points.
For (0,5),
![5=a(0)^2+b(0)+c\Rightarrow c=5](https://img.qammunity.org/2021/formulas/mathematics/high-school/518ek3o7cezrjh7l70eq5lmzyleozwv54g.png)
The value of c is 5.
For (5,0),
.... (2)
For (3,-4),
.... (3)
Multiply equation (2) by 3 and equation (3) by 5.
.... (4)
.... (5)
Subtract equation (5) from equation (4).
Substitute a=1 in equation (3).
![9(1)+3b=-9](https://img.qammunity.org/2021/formulas/mathematics/high-school/bnnip0u3eq0f6v3cmv6usm8dcw67xf5mkl.png)
![9+3b=-9](https://img.qammunity.org/2021/formulas/mathematics/high-school/r0v4rulyxp6ykpjtfj78irj7boam54zy2r.png)
![3b=-9-9](https://img.qammunity.org/2021/formulas/mathematics/high-school/txcgchan1r364avdi4g5xu6wwbe6kel35s.png)
![3b=-18](https://img.qammunity.org/2021/formulas/mathematics/high-school/cwgsri85798kiqjs2m2ro7chkap9rda1ex.png)
![b=-6](https://img.qammunity.org/2021/formulas/mathematics/middle-school/cqlkos9aw8rh45ymrgf7w5v2jlcrv64qjl.png)
Substitute a=1,b=-6 and c=5 in equation (1).
![f(x)=1x^2+(-6)x+(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/z1dt0aphcqe2m9h97tiid8vdhm5y8lkn5u.png)
![f(x)=x^2-6x+5](https://img.qammunity.org/2021/formulas/mathematics/high-school/tqsesi2boohp9wvbwueppltwx4a6ul5nek.png)
Therefore, the required function is
.