Answer:
![\phi=28.4^(\circ)](https://img.qammunity.org/2021/formulas/physics/college/hp0s12q1e14m0pqpaisqi30jvixx0kshtn.png)
Step-by-step explanation:
We are given that
Capacitive reactance=
![X_c=650\Omega](https://img.qammunity.org/2021/formulas/physics/college/5onwblpuju6vr0o07rntsflwdg32mjkbbc.png)
Resistance of circuit= R=
![1200\Omega](https://img.qammunity.org/2021/formulas/physics/college/ovohfmpavuixhxaoe7u5s3p8hofqbg7k7y.png)
We have to find the phase angle between circuit voltage and current.
We know that
Phase angle,
![\phi=tan^(-1)((X_c)/(R))](https://img.qammunity.org/2021/formulas/physics/college/5bancvfq0rao02qvcd1can96szb345h4wl.png)
By using this formula we will find the phase angle between voltage and current of circuit.
Substitute the values then we get
![\phi=\tan^(-1)((650)/(1200))](https://img.qammunity.org/2021/formulas/physics/college/2vu5s9h7gw0f1k4wvvxvykmmeegwg6tmr2.png)
![\phi=\tan^(-1)(0.54)](https://img.qammunity.org/2021/formulas/physics/college/z5tczuw4fh1vl68fzh9g394uqva2ikfi7k.png)
![\phi=28.4^(\circ)](https://img.qammunity.org/2021/formulas/physics/college/hp0s12q1e14m0pqpaisqi30jvixx0kshtn.png)
Hence, the phase angle between circuit voltage and current=28.4 degrees