154k views
1 vote
20 POINTS FOR 3 QUESTIONS!!!!

Given: ∆ABC, AB = BC, m∠1<90°


Perimeter of ∆ABC = 25


Difference between the two sides is 4


Find: AB, BC, AC



List the sides of ΔRST in in ascending order (shortest to longest) if:


m∠R = 3x+42°, m∠S = 4x−11°, and m∠T = x+13°



List the sides of ΔRST in in ascending order (shortest to longest) if:


m∠R = 2x+11°, m∠S = 3x+23°, and m∠T = x+42°

User RachelD
by
4.8k points

1 Answer

3 votes

Answer with Step-by-step explanation:

1.In triangle ABC

AB=BC

Let AB=BC=x and AC=y

Perimeter of triangle ABC=25


x+x+y=25


2x+y=25...(1)


x-y=4...(2)

Adding equation (1) and (2)


3x=29


x=(29)/(3)=9.67

Substitute x=9.67 in equation (2)


9.67-y=4


y=9.67-4=5.67


AB=BC=9.67


AC=5.67

2.
m\angle R=2x+11


m\angle S=3x+23


m\angle T=x+42


m\angle R+m\angle S+m\angle T=180^(\circ)

By using triangle angle sum property

Substitute the values then we get


3x+42+4x-11+x+13=180


8x+44=180


8x=180-44=136


x=(136)/(8)=17

Substitute the value


m\angle R=3(17)+42=93^(\circ)


m\angle S=4(17)-11=57^(\circ)


m\angle T=17+13=30^(\circ)


m\angle R>m\angle S


m\angle S>m\angle T


ST>RT (Side ST is opposite to angle R, Side RT is opposite to angle S


RT>RS (side RS is opposite to angle T)

When a>b

Then , opposite side of a> opposite side of b

RS<RT<ST

3.
m\angle R=2x+11


m\angle S=3x+23


\angle T=x+42


m\angle R+m\angle S+m\angle T=180^(\circ)

By using triangle angle sum property

Substitute the values then we get


2x+11+3x+23+x+42=180


6x+76=180


6x=180-76


6x=104


x=(104)/(6)=17.3

Substitute the value


m\angle R=2(17.3)+11=45.6


m\angle S=3(17.3)+23=74.9


m\angle T=17.3=42=59.3


m\angle S>m\angle T


m\angle T>m\angle R

RT>RS

RS>ST

ST<RS<RT

User Mike Murray
by
4.6k points