Answer:
Explanation:
Given is a differntial equation
,where x can take any positive value
One of the solution is
![y_1 = x^3](https://img.qammunity.org/2021/formulas/mathematics/college/6ou9sr809mhnn6qni0irg9f30ffoz4pwx7.png)
Let us assume the second solution
![y_2 = u x^3](https://img.qammunity.org/2021/formulas/mathematics/college/4igky1u5y7651w7ee9c8sk87mlfg0wzpyj.png)
Differentiate this y2 two times and plug in the DE to reduce the order
![y_2' = u'x^3 +3x^2 u\\y_2](https://img.qammunity.org/2021/formulas/mathematics/college/h9rl911m6tlko3noo3u8fjw2gtsrz5jjto.png)
plug these in the DE
![u](https://img.qammunity.org/2021/formulas/mathematics/college/6sdijt1hemmnaln7dxk1qxik5czy8qf8m9.png)
Put w=u'
xw'+11w=0
![y_2=ux^3](https://img.qammunity.org/2021/formulas/mathematics/college/1x69n7s0x0jejbzf3bcmj1opcbkccig8ut.png)