Answer : The two consecutive integers are, 4 and 5
Step-by-step explanation :
Let the two consecutive number be, x and (x+1)
The sum of the reciprocals of two consecutive integers is 9/20.
The expression will be:
![(1)/(x)+(1)/(x+1)=(9)/(20)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ta2xan6ii9dxmob0gplnbhzbjh645bbjz5.png)
Now solving the term 'x', we get:
![(x+1+x)/((x)(x+1))=(9)/(20)](https://img.qammunity.org/2021/formulas/mathematics/high-school/inkbzqbw4cupjvhy9ki0ovm8rcxhgvrpt0.png)
![(2x+1)/(x^2+x)=(9)/(20)](https://img.qammunity.org/2021/formulas/mathematics/high-school/g9877oqps15poyo5lr4yr86afaqmbc8l83.png)
![20(2x+1)=9(x^2+x)](https://img.qammunity.org/2021/formulas/mathematics/high-school/vqh3lokvdc3bimzsyrxylqtvrh1b4y28zg.png)
![40x+20=9x^2+9x](https://img.qammunity.org/2021/formulas/mathematics/high-school/dzhtvtu3wkgs7vvqwhyfpnjugzw14t9jo1.png)
![9x^2-31x-20=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/tkrnftl08qjb0b40p36cengn8rhw0bx5n9.png)
We are solving the quadratic equation by middle term splitting.
![9x^2-36x-5x-20=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/rge5szlye9e7mdv5nv1jznloa5gacvh2xj.png)
![9x(x-4)+5(x-4)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/a8ddjb3ed6bc318gbs0drljy31wbg6njzu.png)
![(9x+5)(x-4)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/c214sh35r8g48mm0o7gp7n8072citbqlzm.png)
![(9x+5)=0\text{ and }(x-4)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/3yqt066ksij4ljtgkm68qxk5f3t13iqrvz.png)
![x=(-5)/(9)\text{ and }x=4](https://img.qammunity.org/2021/formulas/mathematics/high-school/3kgifihekv7thnzdcee335kkg1vc06klyn.png)
We are neglecting the value of
![x=(-5)/(9)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4i0odq10ovq6qbkrrth90pyycjefimeogn.png)
Thus we are taking x = 4
When x = 4 then (x+1) = (4+1) = 5
Thus, the two consecutive integers are, 4 and 5