64.4k views
3 votes

(3h^{(5)/(2) })( 2k^{(3)/(4) })(3h^{(5)/(2) }) (2k^{(3)/(4) })

Please Show Your Work

User Catrice
by
4.5k points

1 Answer

4 votes

Answer:


486h^(5)k√(2k)

Explanation:

We have to simplify the expression
(3h^{(5)/(2)})(2k^{(3)/(4)})(3h^{(5)/(2)})(2k^{(3)/(4)})

Now,


(3h^{(5)/(2)})(2k^{(3)/(4)})(3h^{(5)/(2)})(2k^{(3)/(4)})

=
(3^{(5)/(2)}* 3^{(5)/(2)})* (2^{(3)/(4)} * 2^{(3)/(4)}) * (h^{(5)/(2)}* h^{(5)/(2)})* (k^{(3)/(4)} * k^{(3)/(4)})

{As the terms are in product form, so we can treat them separately}

=
3^{((5)/(2) + (5)/(2))} * 2^{((3)/(4) + (3)/(4))} * h^{((5)/(2) + (5)/(2))} * k^{((3)/(4) + (3)/(4))}

{Since, we know that
a^(b) * a^(c) = a^(b + c)}

=
3^(5) * 2^{(3)/(2)} * h^(5) * k^{(3)/(2)}

=
243 * 2√(2) * h^(5)* k^{(3)/(2) }

=
486√(2) * h^(5) * k√(k)

=
486h^(5)k√(2k) (Answer)

User Sagar Junnarkar
by
4.5k points