Answer:
The coordinates of point P is
![((19)/(4) ,4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nhavc0hoss64rba9i5wn1kwdqyhm7xnv55.png)
Explanation:
Here, the coordinates of the point A and B are given as:
A (3,6) and B(10,-2)
Let us assume the point P (a,b) divides the line segment AB in ratio 1:3.
Now, by SECTION FORMULA:
The coordinate of the point (a,b) which divides the line segment with points (x1,y1) and (x2,y2) in ratio m1 : m2 is given as:
![(a,b) = ((m_2x_1 + m_1x_2)/(m_1+m_2), (m_2y_1 + m_1y_2)/(m_1+m_2))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2u5a9b6xz9hwsdd6wh7jplx36a320mhmna.png)
Now, here putting the values of the points A and B as (3,6) and (10,-2) adn ratio m1 : m2 as 1:3, we get:
![(a,b) = ((3(3) + 1(10))/(1+3), (3(6) + 1(-2))/(1+3))\\\implies (a,b)= ((9+10)/(4) , (18-2)/(4)) =((19)/(4) ,(16)/(4) )\\\implies (a,b) = ((19)/(4) ,4 )](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ylu8eqxh5fkl7ff5p3yhgcfdv02rvzta6i.png)
Hence, the coordinates of point P is
![((19)/(4) ,4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nhavc0hoss64rba9i5wn1kwdqyhm7xnv55.png)