Answer:
v = 1/2(1 + i√23) , 1/2(1 - i√23).
Explanation:
-2v^2 - v + 12 = -3v^2 + 6
-2v^2 + 3v^2 - v + 12 - 6 = 0
v^2 - v + 6 = 0
This will not factor so we could use the quadratic formula to solve it:
For the equation ax^2 + bx + c = 0 the roots are:
x = [ - b +/- sqrt(b^2 - 4ac) ] / 2a.
So here we have:
v = [-(-1) +/- sqrt((-1)^1 - 4*1*6)] / 2
v = [ 1 +/- sqrt (-23)] / 2
= 1/2 + i√23/2 , 1/2 - i√23/2
= 1/2(1 + i√23) , 1/2(1 - i√23).