Final answer:
The crate has an acceleration of 0.43 m/s^2. It travels 21.5 m in 10.0 s and has a speed of 4.3 m/s at the end of 10.0 s.
Step-by-step explanation:
To solve this problem, we can use Newton's second law, which states that force is equal to mass times acceleration (F = ma).
(a) We are given that the mass of the crate is 32.5 kg and the net horizontal force acting on it is 14.0 N. Plugging these values into the equation, we get:
F = ma
14.0 N = 32.5 kg * a
a = 14.0 N / 32.5 kg
a = 0.43 m/s^2
So, the acceleration produced is 0.43 m/s^2.
(b) To find the distance traveled by the crate in 10.0 s, we can use the equation of motion: distance = initial velocity * time + (1/2) * acceleration * time^2.
Since the crate starts at rest, the initial velocity is 0 m/s:
distance = 0 * 10.0 s + (1/2) * 0.43 m/s^2 * (10.0 s)^2
distance = 0 + (1/2) * 0.43 m/s^2 * 100.0 s^2
distance = 21.5 m
So, the crate travels 21.5 m in 10.0 s.
(c) To find the speed of the crate at the end of 10.0 s, we can use the equation of motion: final velocity = initial velocity + acceleration * time.
Since the crate starts at rest, the initial velocity is 0 m/s:
final velocity = 0 + 0.43 m/s^2 * 10.0 s
final velocity = 4.3 m/s
So, the speed of the crate at the end of 10.0 s is 4.3 m/s.