Explanation:
f(x) = (x − 9) / (x + 5)
g(x) = (-5x − 9) / (x − 1)
To find f(g(x)), substitute g(x) into f(x).
f(g(x)) = [(-5x − 9) / (x − 1) − 9] / [(-5x − 9) / (x − 1) + 5]
Multiply top and bottom by x − 1.
f(g(x)) = [(-5x − 9) − 9(x − 1)] / [(-5x − 9) + 5(x − 1)]
Simplify.
f(g(x)) = (-5x − 9 − 9x + 9) / (-5x − 9 + 5x − 5)
f(g(x)) = (-14x) / (-14)
f(g(x)) = x
To find g(f(x)), substitute f(x) into g(x).
g(f(x) = [-5(x − 9) / (x + 5) − 9] / [(x − 9) / (x + 5) − 1]
Multiply top and bottom by x + 5.
g(f(x) = [-5(x − 9) − 9(x + 5)] / [(x − 9) − (x + 5)]
Simplify.
g(f(x) = (-5x + 45 − 9x − 45) / (x − 9 − x − 5)
g(f(x) = (-14x) / (-14)
g(f(x) = x