Answer:
Explanation:
8) y = -2x + 1 and the line passes through (2, - 1)
The equation of a straight line can be represented in the slope intercept form as
y = mx + c
Where
m = slope = (change in the value of y in the y axis) / (change in the value of x in the x axis)
The equation of the given line is
y= -2x + 1
Comparing with the slope intercept form, slope = - 2
If two line passing through the given point is perpendicular to the given line, it means its slope is the negative reciprocal of that of the given line. Therefore, the slope of the line passing through (2,-1) is 1/2
To determine the intercept, we would substitute m = 1/2, x = 2 and y = -1 into y = mx + c. It becomes
- 1 = 1/2 × 2 + c = 1 + c
c = - 1 - 1 = - 2
The equation becomes
y = x/2 - 2
9) 3x + y = 5 and the line passes through (-9, 3)
The equation of the given line is
3x + y = 5
y = -3x + 5
Comparing with the slope intercept form, slope = - 3
If two line passing through the given point is perpendicular to the given line, it means its slope is the negative reciprocal of that of the given line. Therefore, the slope of the line passing through (- 9, 3) is 1/3
To determine the intercept, we would substitute m = 1/3, x = -9 and y = 3 into y = mx + c. It becomes
3 = 1/3 × -9 + c = - 3 + c
c = 3 + 3 = 6
The equation becomes
y = x/3 + 6