is proved
Solution:
Given that,
![(2 \tan x)/(1-\tan ^(2) x)+(1)/(2 \cos ^(2) x-1)=(\cos x+\sin x)/(\cos x-\sin x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/a0wetaupo7t6q8xb9gtu00iyzso868tw57.png)
Let us first solve the L.H.S
--- (1)
By trignometric identities,
![\tan 2 x=(2 \tan x)/(1-\tan ^(2) x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6g8jbc8nezea07eeupqmtg2whorg29doha.png)
![\cos 2 x=2 \cos ^(2) x-1=\cos ^(2) x-\sin ^(2) x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/s4lns7cdzzbjjf78tjzy8ukwj6yiekfbpf.png)
By using these in (1) we get,
![\text { L. H.S }=\tan 2 x+(1)/(\cos 2 x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gxx4fw3fupdipq7j4mi52z9ia3ykqqyrb6.png)
By definition of tan,
![tan x = (sinx)/(cosx)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/swwsj5apfce0ppgw41b3kgs2xb421h3psb.png)
Therefore,
--- (ii)
By trignometric identities,
![\cos 2 x=2 \cos ^(2) x-1=\cos ^(2) x-\sin ^(2) x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/s4lns7cdzzbjjf78tjzy8ukwj6yiekfbpf.png)
![\begin{aligned}&\sin 2 x=2 \sin x \cos x\\\\&\cos ^(2) x+\sin ^(2) x=1\end{aligned}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/bf4gxaayuy1bo557mfsvxixlahd8rylcd4.png)
By using these in (ii)
----- (iii)
We know that,
![(a+b)^2 = a^2 + 2ab + b^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/lmkzqf6dww3g20jyuu8sntm79eis7o63j2.png)
Similarly,
![(cosx + sinx)^2 = cos^2x + 2cosxsinx + sin^2x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/m6wsdupkzawfaqwv0cm82vdlarznitd0kw.png)
Also,
![a^2 - b^2 = (a+b)(a-b)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2soz8m09dgcs4h1kreorknsro84ace2r85.png)
Similarly,
![cos^2x - sin^2x = (cosx+sinx)(cosx-sinx)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/sdqymvjjvxwp1e4g1987ei5nkvkz3jwmip.png)
Therefore apply these in (iii)
![\begin{aligned}&\text { L. } H . S=((\cos x+\sin x)^(2))/(\cos ^(2) x-\sin ^(2) x)\\\\&\text { L. H.S }=((\cos x+\sin x)(\cos x+\sin x))/((\cos x+\sin x)(\cos x-\sin x))\end{aligned}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5fkjkimkl174alksyo0jcx6g4xxgffkrls.png)
Cancel out (cos x + sin x) on numerator and denominator
![\text { L. H.S }=(\cos x+\sin x)/(\cos x-\sin x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/cfsxsngem9n0vx1p08hqlktq4zorsbnq1k.png)
![(2 \tan x)/(1-\tan ^(2) x)+(1)/(2 \cos ^(2) x-1)=(\cos x+\sin x)/(\cos x-\sin x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/a0wetaupo7t6q8xb9gtu00iyzso868tw57.png)
Thus L.H.S = R.H.S
Thus proved