168k views
4 votes
Write and simplify the integral that gives the arc length of the following curve on the given interval b. If necessary, use technology to evaluate or approximate the integral. y:31n x, for 2sxs5 a. The integral that gives the arc length of the curve is L dx &The arc length of the curve is approximately (Round to three decimal places as needed.)

User JeffJenk
by
4.5k points

1 Answer

6 votes

Answer:

a.
\displaystyle AL = \int\limits^5_2 {\sqrt{1+ (9)/(x^2)} \, dx

b.
\displaystyle AL = 4.10322

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Integration

  • Integrals
  • Definite Integrals
  • Integration Constant C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Arc Length Formula [Rectangular]:
\displaystyle AL = \int\limits^b_a {√(1+ [f'(x)]^2)} \, dx

Explanation:

Step 1: Define

Identify

y = 3ln(x)

Interval [2, 5]

Step 2: Find Arc Length

  1. [Function] Differentiate [Logarithmic Differentiation]:
    \displaystyle (dy)/(dx) = (3)/(x)
  2. Substitute in variables [Arc Length Formula - Rectangular]:
    \displaystyle AL = \int\limits^5_2 {\sqrt{1+ [(3)/(x)]^2}} \, dx
  3. [Integrand] Simplify:
    \displaystyle AL = \int\limits^5_2 {\sqrt{1+ (9)/(x^2)} \, dx
  4. [Integral] Evaluate:
    \displaystyle AL = 4.10322

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Applications of Integration

Book: College Calculus 10e

User DNKROZ
by
4.9k points