41.1k views
4 votes
Amc "for each $x$" in [0,1], define f(x) = 2x for how many values of x in [0,1] if f 2005 (x) = 1/2?

1 Answer

3 votes

Answer:


2^(2005)

Explanation:

We are given
f^([2005])(x) = \frac {1}{2}.

Hence,
f(f^([2004])(x))=(1)/(2).

Assume
y=f^([2004])(x).

Hence,
f(y)=(1)/(2) or
y=(1)/(4) or
y=(3)/(4).

So we can conclude that
f^([2004])(x)=(1)/(4) or
f^([2004])(x)=(3)/(4).

So we can find
f(f^([2003])(x))=(1)/(4) orf(f^{[2003]}(x))=\frac{3}{4}.

Assume
z=f^([2003])(x).

Hence,
f(z)=(1)/(8) or f(z)=\frac{7}{8} or f(z)=\frac{5}{8} or f(z)=\frac{3}{8}.

Therefore, we double the number of possible solutions for each iteration.

Thus, the number of solutions is
2^(2005).

User Aixecador
by
5.2k points