123k views
2 votes
How do you integrate
\int\limits ln({x+1}) \, dx using integration by parts?

Thank you!

1 Answer

5 votes

Answer:


\int \ln (x+1) \, dx=x\cdot \ln (x+1)-x+\ln (x+1)+C

Explanation:

Use integration by parts formula:


\int u \, dv=uv-\int v \, du

For the integral


\int \ln(x+1) \, dx,


u=\ln (x+1)\\ \\dv=dx,

then


du=d(\ln (x+1))=(1)/(x+1)\ dx\\ \\v=x

and


\int \ln(x+1) \, dx\\ \\=x\cdot \ln (x+1)-\int x\cdot (1)/(x+1) \, dx\\ \\= x\cdot \ln (x+1)-\int (x+1-1)/(x+1) \, dx\\ \\=x\cdot \ln (x+1)-\int \left(1-(1)/(x+1)\right) \, dx\\ \\=x\cdot \ln (x+1)-\int \, dx +\int (1)/(x+1) \, dx\\ \\=x\cdot \ln (x+1)-x+\ln (x+1)+C

User Dandavis
by
4.5k points