Answer:
The area of the searched region is
![A= a+b+ (2n)/(n+1)- \frac{n(a^{(n+1)/(n) }+b^{(n+1)/(n) }) }{n+1}-2](https://img.qammunity.org/2021/formulas/mathematics/college/4rri1mhfo99bje9tl9mrn7d6vf9rbc9qcv.png)
Explanation:
If you want to find the area of a region bounded by functions f(x) and G(x) between two limits (a,b), you have to do a double integral. you must first know which of the functions is greater than the other for the entire domain.
In this case, for 0<x<1, f(x)<g(x)
while for 1<x, g(x)<f(x).
Therefore if our domain is all real numbers superior to 0 (where the limit 0<a<1 and 1<b), we have to do 2 integrals:
A=A(a<x<1)+A(1<x<b)
![A(a<x<1)=\int\limits^1_a {\int\limits^{x^{(1)/(n)} }_(x) } {} \, dy } \, dx = \int\limits^1_a {x^{(1)/(n) } -x \, dx = a-1 +(n)/(n+1) - \frac{na^{(n+1)/(n) } }{n+1}](https://img.qammunity.org/2021/formulas/mathematics/college/f11h6dxbfld1jxbr9ytsigvq1qtzdxwyrt.png)
![A(1<x<b)=\int\limits^b_1 {\int\limits^(x)_{x^{(1)/(n) } } {} \, dy } \, dx = \int\limits^b_1 {x-x^{(1)/(n) } \, dx =b-1 + (n)/(n+1) - \frac{nb^{(n+1)/(n) } }{n+1}](https://img.qammunity.org/2021/formulas/mathematics/college/4sxf7w9aoem5zf8ogrbg1g3x3tda0uqx3c.png)
![A=a-1 +(n)/(n+1) - \frac{na^{(n+1)/(n) } }{n+1} + b-1 + (n)/(n+1) - \frac{nb^{(n+1)/(n) } }{n+1} = a+b+ (2n)/(n+1) - \frac{n(a^{(n+1)/(n) }+b^{(n+1)/(n) }) }{n+1} -2](https://img.qammunity.org/2021/formulas/mathematics/college/p0f9ufc9ozdras1kvlfb11dxbz5c0ngp6m.png)