203k views
25 votes
In circle A as pictured above, segment DC is tangent to circle A at D.

Also, DC = 24 and BC = 18.

Find the length of the radius of circle A.

A)7

B) 6√7

C)25

D)12√5

In circle A as pictured above, segment DC is tangent to circle A at D. Also, DC = 24 and-example-1

1 Answer

11 votes
  • AC=2(BC)=2(18)=36
  • DC=34

Now

It's a right angle triangle

Perpendicular be radius and P

Apply Pythagorean theorem


\\ \rm\rightarrowtail P^2=36^2-24^2


\\ \rm\rightarrowtail P^2=720


\\ \rm\rightarrowtail P=√(720)


\\ \rm\rightarrowtail P=√(2(2)(2)(2)(3)(3)(5))


\\ \rm\rightarrowtail P=4(3)√(5)


\\ \rm\rightarrowtail P=12√(5)

User Llllllllll
by
4.4k points