7.2k views
1 vote
Please answer this question​

Please answer this question​-example-1

2 Answers

1 vote

Simplify the integrand:


(\left(x-x^3\right)^(\frac13))/(x^4) = \frac{\left(x^3 \left(\frac1{x^2}-1\right)\right)^(\frac13)}{x^4}= \frac{x \left(\frac1{x^2} - 1\right)^(\frac13)}{x^4} = \frac{\left(\frac1{x^2}-1\right)^(\frac13)}{x^3}

Substitute y = 1/x² - 1 and dy = -2/x³ dx :


\displaystyle \int \frac{\left(\frac1{x^2}-1\right)^(\frac13)}{x^3} \, dx = -\frac12 \int y^(\frac13) \, dy \\\\ = -\frac12 * \frac34 y^(\frac43) + C \\\\ = \boxed{-\frac38 \left(\frac1{x^2}-1\right)^(\frac43) + C}

User Mukesh Yadav
by
8.3k points
5 votes


\rm \int \frac{(x - {x}^3 {)}^{ (1)/(3) } }{ {x}^(4) } dx \\

can be written as:-


\rm\int{(- (x^(3))/(3) + (x)/(3))/(x^(4)) d x} \\


\rm = {\int{(1 - x^(2))/(3 x^(3)) d x}} \\


\rm = {\left(\frac{\displaystyle \rm\int{(1 - x^(2))/(x^(3)) d x}}{3}\right)} \\


= \rm \frac{{\displaystyle \rm\int{\left(- (1)/(x) + (1)/(x^(3))\right)d x}}}{3} \\


= \rm \frac{{\left( \displaystyle \rm\int{(1)/(x^(3)) d x} - \int{(1)/(x) d x}\right)}}{3} \\


\rm \red{- \frac{\int{(1)/(x) d x}}{3} + \frac{\color{red}{\int{(1)/(x^(3)) d x}}}{3}=- \frac{\int{(1)/(x) d x}}{3} + \frac{\color{red}{\int{x^(-3) d x}}}{3}=- \frac{\int{(1)/(x) d x}}{3} + \frac{\color{red}{(x^(-3 + 1))/(-3 + 1)}}{3}=- \frac{\int{(1)/(x) d x}}{3} + \frac{\color{red}{\left(- (x^(-2))/(2)\right)}}{3}=- \frac{\int{(1)/(x) d x}}{3} + \frac{\color{red}{\left(- (1)/(2 x^(2))\right)}}{3}} \\


\rm\int{(- (x^(3))/(3) + (x)/(3))/(x^(4)) d x} = - \frac{\ln{\left(\left|{x}\right| \right)}}{3} - (1)/(6 x^(2))+C \\

User ParDroid
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories