215k views
5 votes
Let log_(b)A=3; log_(b)C=2; log_(b)D=5 what is the value of log_(b)((A^(5)C^(2))/(D^(6)))

User Entrepaul
by
8.0k points

1 Answer

3 votes

Answer:

-11

Explanation:

Given


\log_bA=3\\ \\\log_bC=2\\ \\\log_bD=5

Use properties:


\log_b(A\cdot C)=\log_bA+\log_bC\\ \\\log_b(A)/(C)=\log_bA-\log_bC\\ \\\log_bA^k=k\log_bA

Thus,


\log_b(A^5\cdot C^2)/(D^6)\\ \\=\log_b(A^5\cdot C^2)-\log_bD^6\\ \\=\log_bA^5+\log_bC^2-\log_bD^6\\ \\=5\log_bA+2\log_bC-6\log_bD\\ \\=5\cdot 3+2\cdot 2-6\cdot 5\\ \\=15+4-30\\ \\=-11

User Dradd
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories