215k views
5 votes
Let log_(b)A=3; log_(b)C=2; log_(b)D=5 what is the value of log_(b)((A^(5)C^(2))/(D^(6)))

User Entrepaul
by
5.3k points

1 Answer

3 votes

Answer:

-11

Explanation:

Given


\log_bA=3\\ \\\log_bC=2\\ \\\log_bD=5

Use properties:


\log_b(A\cdot C)=\log_bA+\log_bC\\ \\\log_b(A)/(C)=\log_bA-\log_bC\\ \\\log_bA^k=k\log_bA

Thus,


\log_b(A^5\cdot C^2)/(D^6)\\ \\=\log_b(A^5\cdot C^2)-\log_bD^6\\ \\=\log_bA^5+\log_bC^2-\log_bD^6\\ \\=5\log_bA+2\log_bC-6\log_bD\\ \\=5\cdot 3+2\cdot 2-6\cdot 5\\ \\=15+4-30\\ \\=-11

User Dradd
by
5.5k points