128k views
4 votes
A rhombus, COAL is centered at the origin. The longer diagonal is on the y-axis and has a

length of 27m. The shorter diagonal is on the x-axis and has a length of has diagonals with

length 19m. Determine the coordinates of the vertices.

User Epegzz
by
3.0k points

1 Answer

5 votes

Answer with Step-by-step explanation:

We are given that

COAL is a rhombus .

CA and LO are the diagonals of rhombus COAL.

CA=27 m

OL=19 m

We know that

Diagonals of rhombus are bisect to each other.

Let P(0,0) be the intersecting point of diagonals

Therefore, CP=PA

LP=PO

Length PO=
(1)/(2)LO=(19)/(2)=9.5 m

Length of CP=
(1)/(2)PA=\farc{1}{2}(27)=13.5 m

Let C(
0,y_2),O(x_1,0),A(0,y_1) \;and\;L(x_2,0).

Distance formula:
√((x_2-x_1)^2+(y_2-y_1)^2)

Using the formula


CP=√((0-0)^2+(0-y_2)^2)=13.5


√(y^2_2)=13.5


y_2=\pm 13.5

C(0,13.5) or (0,-13.5)


√((y_2-y_1)^2)=27

Substitute the value
y_2=13.5


√(13.5-y_1)=27


13.5-y_1=\pm 27


y_1=13.5-27=-13.5

A(0,-13.5)


13.5-y_1=-27


y_1=13.5+27=40.5

A(0,40.5)

Substitute
y_2=-13.5


√((-13.5-y_1)^2)=27


-13.5-y_1=\pm 27


-13.5-y_1=27


y_1=-13.5-27=-40.5

A(0,-40.5)


-13.5-y_1=-27


y_1=-13.5+27=13.5

A(0,13.5)


LP=√((x_2-0)^2)=9.5


√(x^2_2)=9.5


x_2=\pm 9.5

L(9.5,0) or L(-9.5,0)


√(x_2-x_1)^2)=19


(9.5-x_1)^2}=19


9.5-x_1=\pm 19


9.5-x_1=19


x_1=9.5-19=-9.5


9.5-x_1=-19


x_1=9.5+19=28.5


(-9.5-x_1)=19


-9.5-x_1=\pm 19


-9.5-x_1=19


x_1=-9.5-19=-28.5


-9.5-x_1=-19


-9.5+19=x_1


x_1=9.5

O(-9.5,0) or O(28.5,0) or (-28.5,0) or (9.5,0)

A rhombus, COAL is centered at the origin. The longer diagonal is on the y-axis and-example-1
User Iyad Al Aqel
by
4.0k points