Answer:
a)
![div F = 27 (W)/(km^3)](https://img.qammunity.org/2021/formulas/mathematics/college/3q764w0a3v6tjw6cmiklkkcw3bayy490jy.png)
b)
![\alpha=(27 W/km^3)/(3)= 9(W)/(Km^3)](https://img.qammunity.org/2021/formulas/mathematics/college/8pzf4k8r7q8okrvpkhy0z49wehawuxl2d0.png)
c)
![T(0,0,0)=-(10)/(2(27000)) (0) +7605.185=7605.185](https://img.qammunity.org/2021/formulas/mathematics/college/mj9rahpjqpkiikgum85hv2g0j7qza4tr2b.png)
Explanation:
(a) Suppose that the actual heat generation is 27W/km3 What is the value of div F? div F- Include units)
For this case the value for div F correspond to the generation of heat.
![div F = 27 (W)/(km^3)](https://img.qammunity.org/2021/formulas/mathematics/college/3q764w0a3v6tjw6cmiklkkcw3bayy490jy.png)
(b) Assume the heat flows outward symmetrically. Verify that
where
. Find a α, (Include units.)
For this case we can satisfy this condition:
![div[\alpha (xi +yj +z k)]]=\alpha(1+1+1)=3\alpha](https://img.qammunity.org/2021/formulas/mathematics/college/56r4ixwg9dfp6lxp1y2wkghz733j1c4t9f.png)
And since we have the value for the
we can find the value of
like this:
![\alpha=(27 W/km^3)/(3)= 9(W)/(Km^3)](https://img.qammunity.org/2021/formulas/mathematics/college/8pzf4k8r7q8okrvpkhy0z49wehawuxl2d0.png)
(c) Let T (x,y,z) denote the temperature inside the earth. Heat flows according to the equation F= -k grad T where k is a constant. If T is in °C then k=27000 C/km. Assuming the earth is a sphere with radius 6400 km and surface temperature 20°C, what is the temperature at the center? 27,0 C/km.
For this case we have this:
![F =-k grad T](https://img.qammunity.org/2021/formulas/mathematics/college/fy4bjrp1rrarbkfjgttq16u375rmkmfi3j.png)
And grad T represent the direction of the greatest decrease related to the temperature.
So we have this equation:
![10(xi +yj+zk)=-27000 grad T](https://img.qammunity.org/2021/formulas/mathematics/college/j0qq923w9z03jn0q99ve6p6zifkkc580qa.png)
And we can solve for grad T like this:
![grad T = -(10)/((27000)) (xi+yj+zk)](https://img.qammunity.org/2021/formulas/mathematics/college/oh7lccf4bkjgdu9sigpcrkdss1dv8qprkn.png)
Andif we integrate in order so remove the gradient on both sides we got:
![T=-(10)/(2(27000)) (x^2 +y^2 +z^2) +C](https://img.qammunity.org/2021/formulas/mathematics/college/dsjro5q2zcaebb4zj6uz7y9pyx60rp3jl8.png)
For our case we have the following condition:
![x^2 +y^2 +z^2 = 6400 , T=20 C](https://img.qammunity.org/2021/formulas/mathematics/college/u7g9pmpq0dyjbcklkohhvmycx40xczfvtz.png)
![T=-(1)/(54000) (6400^2)+C =20](https://img.qammunity.org/2021/formulas/mathematics/college/uski2w0oxrdemq9ef4rok058ov6fe97smd.png)
And we can solve for C like this:
![C= 20+(6400^2)/(5400)= 7605.185](https://img.qammunity.org/2021/formulas/mathematics/college/jxn73114zmfzk8wqxygl7ippouy0ym6rx9.png)
So then our equation would be given by:
![T=-(10)/(2(27000)) (x^2 +y^2 +z^2) +7605.185](https://img.qammunity.org/2021/formulas/mathematics/college/mq7u9be3k0ej0jfknc9n7aovdaftfy3ues.png)
And for our case at the center we have that
![x^2+ y^2+ z^2 =0](https://img.qammunity.org/2021/formulas/mathematics/college/xloucckxy6ntaqie97y9fnu8816590uhdd.png)
And we got:
![T(0,0,0)=-(10)/(2(27000)) (0) +7605.185=7605.185](https://img.qammunity.org/2021/formulas/mathematics/college/mj9rahpjqpkiikgum85hv2g0j7qza4tr2b.png)