133k views
4 votes
C be the circle of radius 7 centered at the origin oriented counterclockwise. Evaluate Contour integral Subscript Upper C Superscript Baseline Bold Upper F times d Bold r by parameterizing C.

User Exts
by
4.2k points

1 Answer

3 votes

Answer:


\oint_cF.dr=0\\

Explanation:

Given that a circle C of radius 7


x^(2) +y^(2) =49---(1)

To find:


\oint_(C)F.dr

As NO function is given so we suppose it to be:


F=<x,y>

Parametric equations:


x=rcos\theta=7cos\theta\\y=rsin\theta=7sin\theta

Each point on circle can be then found as


r(\theta)=<7cos\theta,7sin\theta>---(2)

From (2) dr can be found as:


dr=<-7sin(\theta),7cos(\theta)>d\theta---(3)

From (2) and (3)


\oint_cF.dr=\int_(0)^(2\pi){<7cos\theta,7sin\theta><-7sin(\theta),7cos(\theta)>}\,d\theta\\\\\oint_cF.dr=\int_(0)^(2\pi){<(-7cos\theta)(7sin\theta),(7sin(\theta))(7cos(\theta))>}\,d\theta\\\\\\\oint_cF.dr=\int_(0)^(2\pi){-49cos\theta sin\theta+49sin(\theta)cos(\theta)}\,d\theta\\\\\oint_cF.dr=0\\

User Marcelo Paco
by
4.2k points