32.7k views
16 votes

\qquad \quad \huge\color{green}\boxed{ \colorbox{black}{\colorbox{white}{Qʋestiσɳ }}}

⧠ Topic - Damped oscillations [ grade - 11th ]

◉ A dαmped hαrmonıc oscıllαtor hαs α frequencч of 5 oscıllαtıons per second. The αmplıtude drop to hαlf of ıts vαlue for everч 10 oscıllαtıons, the tıme ıt ɯıll tαke to drop to
(1)/(1000) of the αngulαr αmplıtude ıs close to ? ☂

⧠ Given choices :

↳ 100 sec

↳ 10 sec

↳ 20 sec

↳ 50 sec



1 Answer

8 votes
  • The oscillator has frequency 5Hz

We know


\\ \rm\rightarrowtail a=a_oe^(-\gamma t)\dots(1)

  • a is the amplitude

Now amplitude becomes half after 10oscillations .


\\ \rm\rightarrowtail a=(a_o)/(2)

  • Frequency=5Hz
  • Oscillations=10
  • Time=10/5=2s

From eq(1)


\\ \rm\rightarrowtail a=a_o e^(-\gamma t)

  • After 2s of time or 10 oscillations


\\ \rm\rightarrowtail (a_o)/(2)=a_o e^(-\gamma t)


\\ \rm\rightarrowtail (1)/(2)=e^(-\gamma t)

  • Put t=2


\\ \rm\rightarrowtail 2^(-1)=e^(-2\gamma)


\\ \rm\rightarrowtail 2=e^(2\gamma)

  • Remove e


\\ \rm\rightarrowtail 2\gamma=ln2


\\ \rm\rightarrowtail \gamma=(ln2)/(2)\dots(2)

Again from eq(1)


\\ \rm\rightarrowtail a=a_o e^(-\gamma t)


\\ \rm\rightarrowtail (a_o)/(a)=e^(\gamma t)


\\ \rm\rightarrowtail ln\left((a_o)/(a)\right)=\gamma t

  • Put
    \gamma from eq(2)


\\ \rm\rightarrowtail ln\left((a_o)/(a)\right)=\left((ln2)/(2)\right)t


\\ \rm\rightarrowtail ln1000=\left((ln2)/(2)\right)t


\\ \rm\rightarrowtail t=2\left((ln1000)/(ln2)\right)


\\ \rm\rightarrowtail t=2\left((ln10^3)/(ln2)\right)


\\ \rm\rightarrowtail t=2\left((3ln10)/(ln2)\right)


\\ \rm\rightarrowtail t=2\left((6.9077552789821)/(0.6931471805599)\right)


\\ \rm\rightarrowtail t=2(9.9657842846626)


\\ \rm\rightarrowtail t=19.9


\\ \rm\rightarrowtail t\approx 20s

User Landon Poch
by
5.6k points