Answer:
1. Ar, because of its higher effective nuclear charge.
2. ∆Hrxn = -200 KJ/mol
Step-by-step explanation:
The size of the atoms of chemical elements can be measured from their atomic radius which is also affected by the effective nuclear charge.
Recall that elements in a particular period have the same number of electron shells. Also, along a given period, atomic radius decreases due to an increase in the effective (positive) nuclear charge. This is because as the atomic (proton) number increases along that period, the charge on the nucleus also increases. With more protons in the nucleus the overall attraction between the positively charged nucleus and the negatively charged surrounding electrons increases, so the electrons are pulled closer to the nucleus thereby leading to a decrease in the atomic size.
So, along a given period atomic size decreases due to an increase in the effective nuclear charge.
The first ionization energy is the minimum energy (in kilojoules) needed to strip one mole of electrons from one mole of a gaseous atom of an element to form one mole of a gaseous unipositive ion.
Along a particular period, ionization energy increases due to an increase in the effective nuclear charge and a decrease in atomic radius. This is because, the smaller the atom the more stable it is and the more difficult it will be to remove an electron.
For the second question,
The enthalpy change of a reaction is the difference in the bond dissociation energies of the reactants and products. Bonds are broken in reactant molecules and formed in product molecules. Bond breaking energies are usually intrinsic ( endothermic, +be ∆H ) while bond forming energies are usually extrinsic ( exothermic, -ve ∆H ).
So,
∆Hrxn = n∆H(reactants/bonds broken) - m∆H(products/bonds formed)
Where n and m = stoichiometric coefficients of the products and reactants respectively from the balanced chemical equation.
First, draw the correct Lewis structures of the compounds.
Next, identify all the bonds broken and formed.
Then, from the bond dissociation energies ( usually given or looked up in texts ), sum up the bond breaking energies and the bond forming energies and subtract the bond forming energies from the bond breaking energies.
Considering this equation:
H_2C = CH_2 + H-Br rightarrow CH_3CH_2Br
The equation is balanced.
Bonds broken (number of bonds ):
I. C=C (1)
II. H-Br (1)
III. C-H (4)
Bonds formed:
I. C-C (1)
II. C-H (5)
III. C-Br (1)
∆Hrxn = [ ( 1 x C=C ) + ( 4 x C-H ) + ( 1 x H-Br ) ] – [ ( 1 x C-C ) + ( 5 x C-H ) + ( 1 x C-Br ) ]
∆Hrxn = [ ( 1 x 614 ) + ( 4 x 413 ) + ( 1 x 141 ) ] – [ ( 1 x 348 ) + ( 5x 413 ) + ( 1 x 194 ) ]
∆Hrxn = [ ( 614+1652+141) ] – [ ( 348 + 2065 + 194 ) ]
∆Hrxn = 2407 – 2607
∆Hrxn = -200KJ/mol