Answer:
or
![31.4\ cm](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xixrgwlqot5k7f2ia5pren9tsebr8gceua.png)
Explanation:
step 1
Find the circumference of the circle
The circumference of a circle is equal to
![C=2\pi r](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mi4tnw17egix4j0slvrtb6r082cjra53zk.png)
we have
![r=15\ cm](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gzf0r4tqv6k9pp1z343ko2jdrar1jys8qp.png)
substitute
![C=2\pi (15)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gzvqbivft772ixpo4u2mr0zllcwlqfxh1v.png)
![C=30\pi\ cm](https://img.qammunity.org/2021/formulas/mathematics/middle-school/w9c0fojxb0iftuu7ytqjtys66xj3vx451l.png)
step 2
Remember that the circumference of the circle subtends a central angle of 360 degrees
so
using proportion
Find the length of an arc by a central angle of 120 degrees
![(30\pi)/(360^o)=(x)/(120^o)\\\\x=30\pi(120^o)/360^o\\\\x= 10\pi\ cm](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qlqij1tafvf2cb2as8fl280auo0tcjtnuh.png)
The exact value of the length of the arc is
![10\pi\ cm](https://img.qammunity.org/2021/formulas/mathematics/middle-school/34pw3u51c3cmj8lz5pczthfmtduewa8tel.png)
assume
![\pi=3.14](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rl6dh8czfqdfue9fciig8t9lofe1lzq2pb.png)
---> approximate value