Answer:
The variance of the data is 29966.3.
Explanation:
The given data set is
175, 349, 234, 512, 638, 549, 500, 611
We need to find the variance to the nearest hundredth decimal place.
Mean of the data
![Mean=(\sum x)/(n)](https://img.qammunity.org/2021/formulas/mathematics/college/2lnqcn5fevvnb81xqxu0wzpukyiuqecevt.png)
where, n is number of observation.
![Mean=(3568)/(8)=446](https://img.qammunity.org/2021/formulas/mathematics/college/ldh2aaz7ej2ubok8hb2udbbx61ok4mj3r2.png)
The mean of the data is 446.
![Variance=(\sum (x-mean)^2)/(n-1)](https://img.qammunity.org/2021/formulas/mathematics/college/1uf2agq7h0s6t2m8g9358dolllo5gsf39k.png)
![Variance=((175-446)^2+(349-446)^2+(234-446)^2+(512-446)^2+(638-446)^2+(549-446)^2+(500-446)^2+(611-446)^2)/(8-1)]()
![Variance=(209764)/(7)](https://img.qammunity.org/2021/formulas/mathematics/college/ayfhb6ytgkqzk7xrllxcv3lp5mr1jpu1he.png)
![Variance=29966.2857](https://img.qammunity.org/2021/formulas/mathematics/college/qrg2mghcsxkuicozkvt5io4pwbbvhdfatz.png)
![Variance\approx 29966.3](https://img.qammunity.org/2021/formulas/mathematics/college/rl0jashydbxs26yju7jpu8npwiu0tip3ym.png)
Therefore, the variance of the data is 29966.3.