Answer:
409.87803 m/s
Step-by-step explanation:
v = Velocity of bullet
L = Latent heat of fusion = 6 cal/g
c = Specific heat of lead = 0.03 cal/g°C
= Change in temperature = (327-27)
m = Mass of bullet
![1\ J=4.2\ J/cal](https://img.qammunity.org/2021/formulas/physics/high-school/3o7q9o8dhrjtk46tv453br4kabp4c46dkk.png)
The heat will be given by the kinetic energy of the bullet
![Q=(1)/(2)mv^2](https://img.qammunity.org/2021/formulas/physics/high-school/r632dqgavrl9ooif8l2pwnduyr2jw9p579.png)
According to the question
![Q=0.75(1)/(2)mv^2](https://img.qammunity.org/2021/formulas/physics/high-school/x8hgln7umz16qzibpt7wpjjvhbs5lqjscd.png)
This heat will balance the heat going into the obstacle
![Q=mc\Delta T+mL\\\Rightarrow 0.75(1)/(2)mv^2=m(c\Delta T+L)\\\Rightarrow v^2=(2)/(0.75)* (0.03* (327-27)+6)\\\Rightarrow v^2=40\ kcal\\\Rightarrow v^2=40* 4.2* 10^3\\\Rightarrow v^2=168000\ m^2s^2\\\Rightarrow v=√(168000)\\\Rightarrow v=409.87803\ m/s](https://img.qammunity.org/2021/formulas/physics/high-school/sj97dtrn2tuembwxfvlsl6n8wybuhlgipm.png)
The speed of the bullet is 409.87803 m/s