Final answer:
To approximate the probability that the average Chihuahua lives at least 7 years longer than the average Bulldog in a kennel of 100 Bulldogs and 100 Chihuahuas, calculate the difference in means and the standard deviation of the difference. Then, calculate the z-score to find the probability using a z-table or calculator. The approximate probability is less than 0.001.
Step-by-step explanation:
To approximate the probability that the average Chihuahua lives at least 7 years longer than the average Bulldog in a kennel of 100 Bulldogs and 100 Chihuahuas, we need to compare the means of the two populations and determine the difference in years. The mean for Bulldogs is 9 years and the mean for Chihuahuas is 15 years, so the difference in means is 15 - 9 = 6 years.
Now, we need to find the standard deviation of the difference in means. Since we're dealing with independent samples, we can use the formula:
Standard deviation of the difference in means = sqrt((standard deviation of Bulldogs^2) / 100 + (standard deviation of Chihuahuas^2) / 100) = sqrt((3^2) / 100 + (4^2) / 100) = sqrt(0.09 + 0.16) = sqrt(0.25) = 0.5.
Next, we calculate the z-score using the formula:
z-score = (difference in means - 7) / standard deviation of the difference in means = (6 - 7) / 0.5 = -2 / 0.5 = -4.
Finally, we can find the probability using a z-table or calculator. The probability of the average Chihuahua living at least 7 years longer than the average Bulldog is extremely small, as the z-score of -4 corresponds to a very low probability value. Therefore, the approximate probability is less than 0.001.