54.3k views
0 votes
Rewrite with only sin x and cos x.

cos 3x

A. cos x - 4 cos x sin2x
B. -sin3x + 2 sin x cos x
C. -sin2x + 2 sin x cos x
D. 2 sin2x cos x - 2 sin x cos x

User Mati Bot
by
7.7k points

1 Answer

3 votes

Option A


\cos 3 x=\cos x-4 \cos x \sin ^(2) x

Solution:

Given that we have to rewrite with only sin x and cos x

Given is cos 3x


cos 3x = cos(x + 2x)

We know that,


\cos (a+b)=\cos a \cos b-\sin a \sin b

Therefore,


\cos (x+2 x)=\cos x \cos 2 x-\sin x \sin 2 x ---- eqn 1

We know that,


\sin 2 x=2 \sin x \cos x


\cos 2 x=\cos ^(2) x-\sin ^(2) x

Substituting these values in eqn 1


\cos (x+2 x)=\cos x\left(\cos ^(2) x-\sin ^(2) x\right)-\sin x(2 \sin x \cos x) -------- eqn 2

We know that,


\cos ^(2) x-\sin ^(2) x=1-2 \sin ^(2) x

Applying this in above eqn 2, we get


\cos (x+2 x)=\cos x\left(1-2 \sin ^(2) x\right)-\sin x(2 \sin x \cos x)


\begin{aligned}&\cos (x+2 x)=\cos x-2 \sin ^(2) x \cos x-2 \sin ^(2) x \cos x\\\\&\cos (x+2 x)=\cos x-4 \sin ^(2) x \cos x\end{aligned}


\cos (x+2 x)=\cos x-4 \cos x \sin ^(2) x

Therefore,


\cos 3 x=\cos x-4 \cos x \sin ^(2) x

Option A is correct

User Matin H
by
9.1k points