Answer:
Option 3)
![x^3-9^3 = (x-9)(x^2 + 9x + 81)](https://img.qammunity.org/2021/formulas/mathematics/high-school/80qcpflkp43wtqmeaqnu0maq6hvao1vkyz.png)
Explanation:
We use the identities:
![a^3 + b^3 = (a+b)(a^2-ab+b^2)\\a^3-b^3 = (a-b)(a^2+ab+b^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/kjw5mx8jljy56b13zb2s5n0c7e8ycpy5sd.png)
1.
![(x + 7)(x^2 -7x + 14)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ypxeypilnt58wwivkv1nost3x22s1zi4vc.png)
It is not a sum or difference of cubes because it does not satisfies the identity.
2.
![(x + 8)(x^2 + 8x + 64)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9ufcnorenshf5bxvs7fb7amguuz6wodb2q.png)
It is not a sum or difference of cubes because it does not satisfies the identity.
3.
![(x - 9)(x^2 + 9x + 81)\\\text{Comparing with the identity:} \\a^3-b^3 = (a-b)(a^2+ab+b^2)\\\text{We get}\\a = x\\b = 9\\x^3-9^3 = (x-9)(x^2 + 9x + 81)](https://img.qammunity.org/2021/formulas/mathematics/high-school/q7cmh6zugao04yz84c10e4yusqzw34b1hr.png)
Thus, it can be expressed as a difference of cubes.
4.
![(x - 10)(x^2 - 10x + 100)](https://img.qammunity.org/2021/formulas/mathematics/high-school/akb2l4igy5vdr6v5jjndnvg5t9g0z6wjpw.png)
It is not a sum or difference of cubes because it does not satisfies the identity.