88.2k views
2 votes
Can someone help me

Can someone help me-example-1

2 Answers

3 votes

Answer 6<x<30:

Explanation:

User Qmorgan
by
3.2k points
6 votes

Answer:

6 < x < 23.206

Explanation:

To properly answer this question, we need to make the assumption that angle DAC is non-negative and that angle BCA is acute.

The maximum value of the angle DAC can be shown to occur when points B, C, and D are on a circle centered at A*. When that is the case, the sine of half of angle DAC is equal to 16/22 times the sine of half of angle BAC. That is, ...

(2x -12)/2 = arcsin(16/22×sin(24°))

x ≈ 23.206°

Of course, the minimum value of angle DAC is 0°, so the minimum value of x is ...

2x -12 = 0

x -6 = 0 . . . . . divide by 2

x = 6 . . . . . . . add 6

Then the range of values of x will be ...

6 < x < 23.206

_____

* One way to do this is to make use of the law of cosines:

22² = AB² + AC² -2·AB·AC·cos(48°)

16² = AD² + AC² -2·AD·AC·cos(2x-12)

The trick is to maximize x while satisfying the constraints that all of the lengths are positive. This will happen when AB=AC=AD, in which case the equations be come ...

22² = 2·AB²·(1-cos(48°))

16² = 2·AB²·(1 -cos(2x-12))

The value of AB drops out of the ratio of these equations, and the result for x is as above.

User Leslyn
by
3.6k points