204k views
3 votes
Find the volume and area for the objects shown and answer Question

Find the volume and area for the objects shown and answer Question-example-1
User Thrastylon
by
8.8k points

1 Answer

3 votes

Explanation:

You must write formulas regarding the volume and surface area of ​​the given solids.


\bold{\#1\ Rectangular\ prism:}\\\\V=lwh\\SA=2lw+2lh+2wh=2(lw+lh+wh)\\\\\bold{\#2\ Cylinder:}\\\\V=\pi r^2h\\SA=2\pi r^2+2\pi rh=2\pir(r+h)\\\\\bold{\#3\ Sphere:}\\\\V=(4)/(3)\pi r^3\\SA=4\pi r^2


\bold{\#4\ Cone:}\\\\V=(1)/(3)\pi r^2h\\\\\text{we need calculate the length of a slant length}\ l\\\text{use the Pythagorean theorem:}\\\\l^2=r^2+h^2\to l=√(r^2+h^2)\\\\SA=\pi r^2+\pi rl=\pi r^2+\pi r√(r^2+h^2)=\pi r(r+√(r^2+h^2))\\\\\bold{\#5\ Rectangular\ Pyramid:}\\\\V=(1)/(3)lwh\\\\


\\\text{we need to calculate the height of two different side walls}\ h_1\ \text{and}\ h_2\\\text{use the Pythagorean theorem:}\\\\h_1^2=\left((l)/(2)\right)^2+h^2\to h_1=\sqrt{\left((l)/(2)\right)^2+h^2}=\sqrt{(l^2)/(4)+h^2}=\sqrt{(l^2)/(4)+(4h^2)/(4)}\\\\h_1=\sqrt{(l^2+4h^2)/(4)}=(√(l^2+4h^2))/(\sqrt4)=(√(l^2+4h^2))/(2)


\\\\h_2^2=\left((w)/(2)\right)^2+h^2\to h_2=\sqrt{\left((w)/(2)\right)^2+h^2}=\sqrt{(w^2)/(4)+h^2}=\sqrt{(w^2)/(4)+(4h^2)/(4)}\\\\h_2=\sqrt{(w^2+4h^2)/(4)}=(√(w^2+4h^2))/(\sqrt4)=(√(w^2+4h^2))/(2)


SA=lw+2\cdot(lh_1)/(2)+2\cdot(wh_2)/(2)\\\\SA=lw+2\!\!\!\!\diagup\cdot(l\cdot(√(l^2+4h^2))/(2))/(2\!\!\!\!\diagup)+2\!\!\!\!\diagup\cdot(w\cdot(√(w^2+4h^2))/(2))/(2\!\!\!\!\diagup)\\\\SA=lw+(l√(l^2+4h^2))/(2)+(w√(w^2+4h^2))/(2)\\\\SA=(2lw)/(2)+(l√(l^2+4h^2))/(2)+(w√(w^2+4h^2))/(2)\\\\SA=(2lw+l√(l^2+4h^2)+w√(w^2+4h^2))/(2)

Find the volume and area for the objects shown and answer Question-example-1
Find the volume and area for the objects shown and answer Question-example-2
User Meny Issakov
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories