198k views
2 votes
One factor of the function f(x) = x ^ 3 - 8x ^ 2 + 17x - 10.5(x - 5) Describe how to find the x-intercepts and the y-intercept of the graph of f(x) without using technologyShow your work and include all intercepts in your answer.

1 Answer

4 votes

Answer:

x-intercept(s): (−1.9900717, 0)

y-intercept(s): (0, 52.5)

Explanation:

To find the x-intercept, substitute in
0 for
y and solve for
x. To find the y-intercept, substitute in
0 for
x and solve for
y .


f(x)=y


(x)=x

x-intercept

To find the x-intercept(s), substitute in
0 for
y and solve for
x .


f(x) = x ^ 3 - 8x ^ 2 + 17x - 10.5(x - 5


=\bold{0}=x^3-8x^2+17x-10.5\left(x-5\right)


=0\cdot \:10=x^3\cdot \:10-8x^2\cdot \:10+17x\cdot \:10-10.5\left(x-5\right)\cdot \:10


=0=10x^3-80x^2+170x-105\left(x-5\right)


=0=10x^3-80x^2+65x+525


=10x^3-80x^2+65x+525=0


=10x^2-99.90071\dots x+263.80959\dots \approx \:0


\bold{x\approx \:-1.99007\dots}

y-intercept


f(x) = x ^ 3 - 8x ^ 2 + 17x - 10.5(x - 5


=y=\bold{0}^3-8(\bold{0})^2+17(\bold{0})-10.5\left(\bold{0}-5\right)


=y=0-8\cdot \:0+17\left(0\right)-10.5\left(0-5\right)


=y=0-8\cdot \:0+17\cdot \:0-10.5\left(0-5\right)


=y=0-0+0-\left(-52.5\right)


=0-0+0+52.5


\bold{y=52.5}

One factor of the function f(x) = x ^ 3 - 8x ^ 2 + 17x - 10.5(x - 5) Describe how-example-1
User Arvinda Kumar
by
4.0k points