the height of the box is 9 inches
Answer:
solution given:
total surface area of a box=160 square inches
let length, width, and height be l,b, and h respectively.
according to the question:
l=2b
∴b =
![(l)/(2)](https://img.qammunity.org/2022/formulas/physics/college/cus6ip4v1xogacac4yeu9q1e0xqzyj5kao.png)
l=h-4
∴ h=l+4
we have
total surface area of a box=160 square inches
2(lb+lh+bh)=160
![2(l*(l)/(2)+l(l+4)+(l)/(2)*(l+4))=160](https://img.qammunity.org/2022/formulas/mathematics/high-school/f0jsyrmydhyc23wlq7nhzpbgw7euyc33vl.png)
![2*(l^2+2l^2+8l+l^2+4l)/(2)=160](https://img.qammunity.org/2022/formulas/mathematics/high-school/e77xzqlbnaxrcc0gjso32mn89u6qknl1lk.png)
![4l^2+12l=160](https://img.qammunity.org/2022/formulas/mathematics/high-school/ocbth3n9dmnpr9ifi4eyny1tv71qpsx2cg.png)
![4(l^2+3l)=160](https://img.qammunity.org/2022/formulas/mathematics/high-school/61r7gxce4uhhp3e98ag0fuv8n633ddnb5o.png)
![l^2+3l=(160)/(4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/deb0u1cweyh6tk6w1aq8wi3r0s46ghhkmt.png)
![l^2+3l-40=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/2ewdfy0a0tprsjdltcrt8eorcjb6jyzu7m.png)
doing middle term factorization
![l^2+(8-5}l-40=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/igs1kxmtj1lgxzaz7vhrhjjg63hg9aujqd.png)
![l^2+8l-5l-40=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/72m5aqa5x9emczzlomll8kglb9f7rtmay1.png)
taking common from each two terms
l(l+8)-5(l+8)=0
(l+8)(l-5)=0
either
l=-8[neglected as length is always positive]
or
l=5
now
b=
![(5)/(2) =2.5](https://img.qammunity.org/2022/formulas/physics/high-school/l6rmbftjcru9l931fjwvs8rrcdei1jx9v6.png)
h=5+4=9
Explanation: