Assuming both billiard balls have the same mass, conservation of momentum says
![m\vec v_1 + m\vec v_2 = m{\vec v_1}\,' + m{\vec v_2}\,'](https://img.qammunity.org/2022/formulas/physics/high-school/s71gte335230e2hzi3ivvdhvojuk7q6oer.png)
where m = mass of both billiard balls, and v₁ and v₂ = their initial velocities, and v₁' and v₂' = their final velocities. The masses are the same so the exact value of m is irrelevant. The first ball has initial speed 5 m/s and the second is at rest, so
![\left(5 (\rm m)/(\rm s)\right) \, \vec\imath = {\vec v_1}\,' + {\vec v_2}\,'](https://img.qammunity.org/2022/formulas/physics/high-school/6t0ayel6ct68nuvd5inzd9s7foighii3pm.png)
After the collision, the first ball has speed 4.35 m/s and is moving at angle of 30° below the original path, so
![{\vec v_1}\,' = \left(4.35(\rm m)/(\rm s)\right)\left(\cos(30^\circ) \, \vec\imath + \sin(30^\circ) \, \vec\jmath\right) \approx \left(3.77 (\rm m)/(\rm s)\right) \vec\imath + \left(-2.18 (\rm m)/(\rm s)\right) \vec\jmath](https://img.qammunity.org/2022/formulas/physics/high-school/7itr6q927vswlbk3wdiuxl5v6c9xgwji4m.png)
Then the second ball has final velocity vector
![{\vec v_2}\,' \approx \left(1.23 (\rm m)/(\rm s)\right) \vec\imath + \left(2.18 (\rm m)/(\rm s)\right) \vec\jmath](https://img.qammunity.org/2022/formulas/physics/high-school/mj7pjwyf36zbhbx6co95565nx82ueyosqq.png)
so it moves with speed
![\left\|{\vec v_2}\,'\right\| \approx \sqrt{\left(1.23(\rm m)/(\rm s)\right)^2 + \left(2.18(\rm m)/(\rm s)\right)^2} \approx \boxed{2.50 (\rm m)/(\rm s)}](https://img.qammunity.org/2022/formulas/physics/high-school/1eesmhsnss8w0lr0omxq8szndls9py5vun.png)
at an angle of
![\theta \approx \tan^(-1)\left((2.18)/(1.23)\right) \approx \boxed{60.5^\circ}](https://img.qammunity.org/2022/formulas/physics/high-school/5dys6k43u0js0p7bb9pdzq1nxf7q96pnfo.png)
or about 60.5° above the original line of motion.