144k views
5 votes
Find the maclaurin series of the given function f(x)=ln(1-x)

1 Answer

3 votes

Answer:


-a-(a^2)/(2)-(a^3)/(3)-(a^4)/(4)-...-(a^n)/(n)-...

Explanation:

1) the rule is:


ln(1+a)=a-(a^2)/(2)+(a^3)/(3)-(a^4)/(4)+...+(-1)^(n-1)(a^n)/(n)+...

2) according to the rule above:


ln(1+(-a))=(-a)-((-a)^2)/(2)+((-a)^3)/(3)-((-a)^4)/(4)+...+(-1)^(n-1)((-a)^n)/(n)+...

finally,


ln(1-a)=-a-(a^2)/(2)-(a^3)/(3)-(a^4)/(4)-...-(a^n)/(n)-...

User Carrieann
by
4.3k points