14.7k views
2 votes
What is the slope for these cordinates


(-8,11) , (17,4)

User HSBP
by
3.8k points

2 Answers

4 votes


\huge{\purple{\underline{\underline{\bf{\pink{ANSWER:-}}}}}}

We've been asked to find slope of the following coordinates which are (-8,11) and (17,4).

The standard formula to calculate slope is given by,


:\implies\footnotesize\rm{Slope = (y_2 - y_1)/(x_2 - x_1) }


:\implies\footnotesize\rm{Slope = (4 - 11)/(17 - ( - 8)) }


:\implies\footnotesize\rm{Slope = ( - 7)/(17 + 8) }


:\implies\footnotesize\rm{Slope = ( - 7)/(25) }

  • The slope is -7/25.
User Scott Presnell
by
4.2k points
0 votes

Answer:


\displaystyle m = (-7)/(25)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

Coordinate Planes

  • Coordinates (x, y)

Slope Formula:
\displaystyle m = (y_2 - y_1)/(x_2 - x_1)

Explanation:

Step 1: Define

Identify.

Point (-8, 11)

Point (17, 4)

Step 2: Find slope m

Simply plug in the 2 coordinates into the slope formula to find slope m.

  1. Substitute in points [Slope Formula]:
    \displaystyle m = (4 - 11)/(17 - -8)
  2. [Order of Operations] Evaluate:
    \displaystyle m = (-7)/(25)
User Ogur
by
4.4k points