Answer:
Speed of waves on the rope is 21 m/s
Step-by-step explanation:
Length of the rope (l) = 5.0 m
Mass of the rope (m) = 0.52 kg
Tension in the rope (T) = 46 N
Formula of speed of waves on the rope:
![\bold{v = \sqrt{(T)/(\mu)}}](https://img.qammunity.org/2022/formulas/physics/college/v9lh5ihfe3wdcchmnbik0a7yw2bfc004q6.png)
= Mass per unit length of the rope (m/l)
By substituting the values in the formula we get:
![\implies \rm v = \sqrt{(T)/( (m)/(l) )} \\ \\ \implies \rm v = \sqrt{(Tl)/(m)} \\ \\ \implies \rm v = \sqrt{ (46 * 5)/(0.52) } \\ \\ \implies \rm v = \sqrt{ (230)/(0.52) } \\ \\ \implies \rm v = √(442.3) \\ \\ \implies \rm v = 21 \: m {s}^( - 1)](https://img.qammunity.org/2022/formulas/physics/college/9y74uhr93dqpmxrare9mo8u9dbo88epv2o.png)
Speed of waves on the rope (v) = 21 m/s