The given curve crosses the x-axis whenever x is a multiple of π, and it lies above the x-axis between consecutive even and odd multiples of π. So the regions with area S₀, S₁, S₂, ... are the sets
![R_0 = \left\{(x, y) : 0 \le x \le \pi \text{ and } 0 \le y \le e^(-x)\sin(x)\right\}](https://img.qammunity.org/2022/formulas/mathematics/high-school/yopkmv7j5c0jvor9st00faw2z4xg843fs9.png)
![R_1 = \left\{(x, y) : 2\pi \le x \le 3\pi \text{ and } 0 \le y \le e^(-x)\sin(x)\right\}](https://img.qammunity.org/2022/formulas/mathematics/high-school/icb3kjvxrrdumbvidv2fknfo67o9lqijzl.png)
![R_2 = \left\{(x, y) : 4\pi \le x \le 5\pi \text{ and } 0 \le y \le e^(-x)\sin(x)\right\}](https://img.qammunity.org/2022/formulas/mathematics/high-school/rve9slpg7hrtmtquxiqe9sfke8tv4xjlmj.png)
and so on, with
![R_k = \left\{(x, y) : 2k\pi \le x \le (2k+1)\pi \text{ and } 0 \le y \le e^(-x)\sin(x)\right\}](https://img.qammunity.org/2022/formulas/mathematics/high-school/qgwqze3tffi31ajq8shmrwo1hzucqrhqot.png)
for natural number k.
The areas themselves are then given by the integral
![S_k = \displaystyle \int_(2k\pi)^((2k+1)\pi) \int_0^{e^(-x)\sin(x)} dy \, dx = \int_(2k\pi)^((2k+1)\pi) e^(-x)\sin(x) \, dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/zw7vc3b68b9b0nrz0kszehtefddg4f7nsr.png)
Integrate by parts twice. Take
![u = e^(-x) \implies du = -e^(-x) \, dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/ko10m8t7h2m041c4y62efrt8h20374q767.png)
![dv = \sin(x) \, dx \implies v = -\cos(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/kdz4pz7m8xwmewb8ofgw0qayvhm173n848.png)
so that
![\displaystyle \int e^(-x)\sin(x) \, dx = -e^(-x)\cos(x) - \int e^(-x)\cos(x) \, dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/gkknt8qetbwpojw3f1gh5kwtb49ke49jlo.png)
then
![u = e^(-x) \implies du = -e^(-x) \, dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/ko10m8t7h2m041c4y62efrt8h20374q767.png)
![dv = \cos(x) \, dx \implies v = \sin(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/97ln9yc04ymtq25rpqe3q6yhwi3z9a5u7x.png)
so that
![\displaystyle \int e^(-x)\cos(x) \, dx = e^(-x)\sin(x) + \int e^(-x)\sin(x) \, dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/oxrqda9c0gfkhj088bw03txdz126m7bh7v.png)
Overall, we find
![\displaystyle \int e^(-x)\sin(x) \, dx = -e^(-x)\cos(x) - e^(-x)\sin(x) - \int e^(-x)\sin(x) \, dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/fd3vmjtrucdyk828brokvozd6glna450n7.png)
or
![\displaystyle \int e^(-x)\sin(x) \, dx = -\frac12 e^(-x) (\cos(x)+\sin(x)) + C](https://img.qammunity.org/2022/formulas/mathematics/high-school/2iihupss1q20avl82jmeo8djq3t2o6rbru.png)
Using the antiderivative and the fundamental theorem of calculus, we compute the k-th area to be
![\displaystyle S_k = -\frac12 e^(-(2k+1)\pi) (\cos((2k+1)\pi)+\sin((2k+1)\pi)) + \frac12 e^(-2k\pi) (\cos(2k\pi)+\sin(2k\pi))](https://img.qammunity.org/2022/formulas/mathematics/high-school/xme9io27awdvarbptz7my11twi313mhnmw.png)
![\displaystyle S_k = \frac12 e^(-2k\pi) \cos(2k\pi) \left(e^(-\pi) + 1\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/63s1cb6ls5xif5re8jmtt1qvlrtrbszufu.png)
![\displaystyle S_k = \frac{e^(-\pi)+1}2 e^(-2k\pi)](https://img.qammunity.org/2022/formulas/mathematics/high-school/q47rox6y1852h53vh3rcodlm968d5e173f.png)
Since
, the sum we want is a convergent geometric sum. As n goes to ∞, we have
![\displaystyle \lim_(n\to\infty) \sum_(k=0)^n S_k = \frac{e^(-\pi)+1}2 \cdot \frac1{1 - e^(-2\pi)} = \boxed{(e^\pi+1)/(4\sinh(\pi))}](https://img.qammunity.org/2022/formulas/mathematics/high-school/trek6cl1t2bkqwgch53sm62nuxc3iceyke.png)