57.9k views
1 vote
The value of a newly purchased computer will decrease over time. The value of the computer can be modeled by the following function:

f(t)=200+1,200(0.73)2t,

where t is measured in years since the computer was purchased.

Use the drop-down menus to complete the explanation of how the function models the computer's value over time.

The value of a newly purchased computer will decrease over time. The value of the-example-1
The value of a newly purchased computer will decrease over time. The value of the-example-1
The value of a newly purchased computer will decrease over time. The value of the-example-2
The value of a newly purchased computer will decrease over time. The value of the-example-3
The value of a newly purchased computer will decrease over time. The value of the-example-4
User BadSantos
by
8.0k points

2 Answers

2 votes

Answer:

1) 1,400

2) 0

3) 200

The value of a newly purchased computer will decrease over time. The value of the-example-1
User The Bala
by
8.7k points
2 votes

Answer:

  • $1400
  • 0
  • 200

Explanation:

a)

Substitute 0 for t and evaluate the expression. Recognize that any value to the zero power is 1.

f(0) = 200 +1200(0.73^(2·0)) = 200 +1200·1

f(0) = 1400

When t=0, the value of the computer is 1400 dollars.

__

b)

The exponential expression 1200(0.73^(2t)) has a horizontal asymptote of 0. It gets closer and closer to 0.

__

c)

The exponential term gets closer to 0, so the function value gets closer to ...

f(∞) ≈ 200 +0 ≈ 200

f(t) gets closer and closer to 200.

The value of a newly purchased computer will decrease over time. The value of the-example-1
User Bollo
by
6.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories