Split up the interval [1, 3] into n equally spaced subintervals. Each one has length (3 - 1)/n = 2/n, so we're talking about the partition
[1, 1 + 2/n] U [1 + 2/n, 1 + 4/n] U [1 + 4/n, 1 + 6/n] U … U [1 + 2 (n - 1)/n, 3]
Let f(x) = x². Consider the left endpoints of each subinterval, given by the sequence x(i) = 1 + 2 (i - 1)/n for 1 ≤ i ≤ n. Then the area under the graph of f(x) over [1, 3] is approximated by the Riemann sum,
![\displaystyle S_n = \sum_(i=1)^n f(x(i)) \frac2n \\\\ S_n = \frac2n \sum_(i=1)^n \left(1 + \frac{2(i - 1)}n\right)^2 \\\\ S_n = \frac2{n^3} \sum_(i=1)^n \left(n^2 - 4n + 4 + (4n - 8)i + 4i^2\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/usoyomvvjs81qkspckzifnqv2khqdvlh3x.png)
To compute the sum, recall the formulas,
![\displaystyle \sum_(i=1)^n 1 = n](https://img.qammunity.org/2022/formulas/mathematics/high-school/1bvf3nqfq22lctzuovxse0zags6ndjqh37.png)
![\displaystyle \sum_(i=1)^n i = \frac{n(n+1)}2](https://img.qammunity.org/2022/formulas/mathematics/high-school/r7dc0b7njzjur9gg9kgpjvgmnlvolnpeog.png)
![\displaystyle \sum_(i=1)^n i^2 = \frac{n(n+1)(2n+1)}6](https://img.qammunity.org/2022/formulas/mathematics/high-school/mnef9hqh8ayc6pgr4e9ht9yiykxw7izuum.png)
Then
![\displaystyle S_n = \frac2{n^3} \left( n(n^2-4n+4) + \frac{n(n+1)(4n-8)}2 + \frac{2n(n+1)(2n+1)}3\right) \\\\ S_n = (26n^2 - 24n + 4)/(3n^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/fidhrfqi9zwqwbitkxqvuq4qd1znc2zql2.png)
and the exact area under the curve over [1, 3] is
![\displaystyle \int_1^3 x^2 \, dx = \lim_(n\to\infty) S_n = \boxed{\frac{26}3}](https://img.qammunity.org/2022/formulas/mathematics/high-school/xljm5rsa79332vzv6st20m3x3mnm5v294z.png)