19.2k views
3 votes
Have a function f defined by


f(x)=(sin(x)+1)^x
determine the value of

f'\left((3\pi)/(2)\right)



1 Answer

5 votes

Answer:


f'((3\pi)/(2)) is undefined

Explanation:


f(x)=(sinx+1)^x


(d)/(dx)(sinx+1)^x


(d)/(dx)e^(ln((sinx+1)^x))


(d)/(dx)e^(xln(sinx+1))


((d)/(dx)(x)*ln(sinx+1)+x*(d)/(dx)ln(sinx+1))e^(xln(sinx+1))


(ln(sinx+1)+x*cosx((1)/(sinx+1)))(sinx+1)^x


[ln(sinx+1)+(xcosx)/(sinx+1)](sinx+1)^x


f'((3\pi)/(2))=[ln(sin(3\pi)/(2) +1)+((3\pi)/(2) cos(3\pi)/(2) )/(sin(3\pi)/(2) +1)](sin(3\pi)/(2) +1)^{(3\pi)/(2)}


f'((3\pi)/(2))=[ln(-1+1)+((3\pi)/(2) (0) )/(-1+1)](-1+1)^(-1)


f'((3\pi)/(2))=[ln(0)+(0)/(0)](0)^(-1)

Because the derivative is undefined, then the function isn't differentiable at the point
((3\pi)/(2),0), making it a critical point since the slope of the function is 0.

User Fifoernik
by
7.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.