19.2k views
3 votes
Have a function f defined by


f(x)=(sin(x)+1)^x
determine the value of

f'\left((3\pi)/(2)\right)



1 Answer

5 votes

Answer:


f'((3\pi)/(2)) is undefined

Explanation:


f(x)=(sinx+1)^x


(d)/(dx)(sinx+1)^x


(d)/(dx)e^(ln((sinx+1)^x))


(d)/(dx)e^(xln(sinx+1))


((d)/(dx)(x)*ln(sinx+1)+x*(d)/(dx)ln(sinx+1))e^(xln(sinx+1))


(ln(sinx+1)+x*cosx((1)/(sinx+1)))(sinx+1)^x


[ln(sinx+1)+(xcosx)/(sinx+1)](sinx+1)^x


f'((3\pi)/(2))=[ln(sin(3\pi)/(2) +1)+((3\pi)/(2) cos(3\pi)/(2) )/(sin(3\pi)/(2) +1)](sin(3\pi)/(2) +1)^{(3\pi)/(2)}


f'((3\pi)/(2))=[ln(-1+1)+((3\pi)/(2) (0) )/(-1+1)](-1+1)^(-1)


f'((3\pi)/(2))=[ln(0)+(0)/(0)](0)^(-1)

Because the derivative is undefined, then the function isn't differentiable at the point
((3\pi)/(2),0), making it a critical point since the slope of the function is 0.

User Fifoernik
by
3.9k points