11.0k views
1 vote
Tan^2(x) × cos^2(x) = 1 - cos^2(x)

User Metalwihen
by
7.6k points

2 Answers

11 votes

Answer:

true

Explanation:

User Shukura
by
7.6k points
5 votes

Answer: True

Explanation:


\tan ^2\left(x\right)\cos ^2\left(x\right)=1-\cos ^2\left(x\right)


\mathrm{Manipulating\:left\:side}


\tan ^2\left(x\right)\cos ^2\left(x\right)


\mathrm{Use \ the \ basic \ trigonometric \ identity \ \:tan\left(x\right)=(sin\left(x\right))/(cos\left(x\right))}


=\cos ^2\left(x\right)\left((\sin \left(x\right))/(\cos \left(x\right))\right)^2


=(\sin ^2\left(x\right))/(\cos ^2\left(x\right))\cos ^2\left(x\right)


=(\sin ^2\left(x\right)\cos ^2\left(x\right))/(\cos ^2\left(x\right))


\mathrm{Cancel\:the\:common\:factor:}\:\cos ^2\left(x\right)


=\sin ^2\left(x\right)


\mathrm{Use \ the \ Pythagorean \ identity \ \cos ^2\left(x\right)-\sin ^2\left(x\right)=1 \rightarrow \sin ^2\left(x\right)=1-\cos ^2\left(x\right)}}


=1-\cos ^2\left(x\right)


1-\cos ^2\left(x\right) =1-\cos ^2\left(x\right)

Left side = right side

Therefore, the identity is true

User Hasani
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories