2.3k views
2 votes
Find the exact value of tan π/12.

User Bamdan
by
7.7k points

1 Answer

6 votes


\textit{Half-Angle Identities}\qquad tan\left(\cfrac{\theta}{2}\right)= \begin{cases} \pm \sqrt{\cfrac{1-cos(\theta)}{1+cos(\theta)}} \\\\ \cfrac{sin(\theta)}{1+cos(\theta)}~~\leftarrow \textit{let's use this one} \\\\ \cfrac{1-cos(\theta)}{sin(\theta)} \end{cases} \\\\\\ 2\cdot \cfrac{\pi }{12}\implies \cfrac{\pi }{6}~\hspace{10em} \cfrac{~~ (\pi )/(6)~~}{2}\implies \cfrac{\pi }{6}\cdot \cfrac{1}{2}\implies \cfrac{\pi }{12}

so let's use the double of the angle in the half-angle identities, check the picture below for the cosine, sine pairs


tan\left( \cfrac{~~ (\pi )/(6)~~}{2} \right)=\cfrac{sin\left( (\pi )/(6) \right)}{1+cos\left( (\pi )/(6) \right)}\implies tan\left( \cfrac{~~ (\pi )/(6)~~}{2} \right)=\cfrac{~~ (1)/(2)~~}{1+(√(3))/(2)}


tan\left( \cfrac{~~ (\pi )/(6)~~}{2} \right)=\cfrac{~~ (1)/(2)~~}{~~(2+√(3))/(2)~~}\implies tan\left( \cfrac{~~ (\pi )/(6)~~}{2} \right)=\cfrac{1}{2}\cdot \cfrac{2}{2+√(3)} \\\\[-0.35em] ~\dotfill\\\\ ~\hfill tan\left( \cfrac{~~ (\pi )/(6)~~}{2} \right)=\cfrac{1}{2+√(3)}~\hfill

Find the exact value of tan π/12.-example-1
User Nakkeeran
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories