49.7k views
4 votes
HELP!! Scaler multiplication of vectors in component form

HELP!! Scaler multiplication of vectors in component form-example-1
User Ayah
by
4.3k points

1 Answer

3 votes

Answers:

  1. <-6,8>
  2. <-3,3>
  3. <12,12>
  4. <21,4>
  5. <18,22>
  6. <17,30>
  7. <-36,-38>
  8. <16,20>

===========================================================

Work Shown:

Problem 1

u = <-3,4>

2u = 2*<-3,4>

2u = <2(-3), 2(4)>

2u = <-6,8>

Effectively, we multiplied each coordinate by 2.

-----------------

Problem 2

g = <-1,1>

3g = 3*<-1,1>

3g = <3(-1),3(1)>

3g = <-3,3>

Same idea as problem 1, but we tripled each coordinate.

-----------------

Problem 3

z = <-3,-3>

-4z = -4*<-3,-3>

-4z = <-4(-3),-4(-3)>

-4z = <12,12>

-----------------

Problem 4

v = <6,8>

2v = <12,16> .... double both coordinates

u = <-3,4>

3u = <-9,12> .... triple both coordinates

2v-3u = <12,16>-<-9,12>

2v-3u = <12-(-9),16-12>

2v-3u = <12+9,16-12>

2v-3u = <21,4>

I subtracted the corresponding coordinates.

The general rule is <a,b>-<c,d> = <a-c,b-d>

-----------------

Problem 5

y = <1,1>

6y = <6,6> .... multiply each coordinate by 6

v = <6,8>

2v = <12,16>

6y+2v = <6,6>+<12,16> = <6+12,6+16> = <18,22>

This time we add the corresponding coordinates after scaling up the given vectors.

The general rule is <a,b>+<c,d> = <a+c,b+d>

-----------------

Problem 6

u = <-3,4>

v = <6,8>

3v = <18,24>

y = <1,1>

2y = <2,2>

u+3v+2y = <-3,4>+<18,24>+<2,2>

u+3v+2y = <-3+18+2,4+24+2>

u+3v+2y = <17,30>

-----------------

Problem 7

g = <-1,1>

4g = <-4,4>

y = <1,1>

A = 4g+y = <-4,4>+<1,1> = <-4+1,4+1> = <-3,5>

z = <-3,-3>

v = <6,8>

5v = <30,40>

B = z-5v = <-3,-3> - <30,40> = <-3-30,-3-40> = <-33,-43>

A+B = <-3,5>+<-33,-43> = <-36,-38>

-----------------

Problem 8

u = <-3,4>

v = <6,8>

2v = <12,16>

A = u+2v = <-3,4>+<12,16> = <-3+12,4+16> = <9,20>

w = <8,-1>

g = <-1,1>

B = w+g = <8,-1>+<-1,1> = <8+(-1),-1+1> = <7,0>

A+B = <9,20>+<7,0> = <9+7,20+0> = <16,20>

User Mellowsoon
by
5.0k points