69.9k views
3 votes
Find a polynomial with the following zeros.

HELPPPP ASAPPP

Find a polynomial with the following zeros. HELPPPP ASAPPP-example-1

1 Answer

6 votes

Answer:

x³ - 4x² + 2x + 4 = 0

Here's how I solved this:

You start off by rewriting the zeros into factors:

1 - √3 → x = 1 - √3 → (x - 1 - √3)

2 → x = 2 → (x - 2)

1 + √3 → x = 1 + √3 → (x - 1 + √3)

Now you want to multiply the factors together:

(x - 1 - √3) · (x - 2) · (x - 1 + √3)

- Multiply the first two factors together -

(x - 1 - √3) · (x - 2)

(x · x - x · 2 - √3 · x + √3 · 2 - x + 2)

- Combine like terms and simplify -

(x · x - x · 2 - √3 · x + √3 · 2 - x + 2)

(x² - 3x - √3 · x + 2√3 + 2)

- Now multiply the third factor -

(x² - 3x - √3 · x + 2√3 + 2)(x - 1 + √3)

(x² · x + x² · √3 - x² - 3x · x - 3x · √3 + 3x - √3 · xx - √3 · x · √3 +√3 · x + 2 · √3 · x + 2 · √3 · √3 - 2 · √3 + 2x + 2 · √3 - 2)

(x³ + x² · √3 - x² - 3x² - 3x · √3 + 3x - √3 + 3x - √3 * x² - x · 3 + √3 · x + 2 · √3 · x + 2 · 3 - 2 × √3 + 2x + 2 √3 - 2)

- Combine like terms and simplify -

(x³ + x² · √3 - x² - 3x² - 3x · √3 + 3x - √3 + 3x - √3 * x² - x · 3 + √3 · x + 2 · √3 · x + 2 · 3 - 2 × √3 + 2x + 2 √3 - 2)

x³ - 4x² + 2x + 4

--------------------------------------------------------------------------------------------------------------

And there we get our solution: x³ - 4x² + 2x + 4

User Nyakiba
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories