Answer:
![32\sqrt3](https://img.qammunity.org/2022/formulas/mathematics/college/nx8zfsfswmeaapl59zx51wf25nifa0wlmj.png)
Explanation:
We need first to find the measure of the red horizontal line, call it x. The triangle i filled is a right triangle, so we can apply pythagoras theorem,
![8^2 = x^2+(4\sqrt3)^2 \rightarrow 64=x^2+(16*3) \\x^2=64-48 \rightarrow x^2=16 \rightarrow x=4](https://img.qammunity.org/2022/formulas/mathematics/college/v40h0gcxl5ms6otk2qma8fs0b236lcjuiq.png)
(we are talking lengths of segment so we take only the positive root!)
At this point we can find the length of the smaller base of the trapezoid (which is
) and apply the formula, or split the figure in a rectangle of sides 6 and
and a triangle of sides
and 4.
With the trapezoid formula
![A=\frac12(B+b)h = \frac12(10+6)4\sqrt3 = 32\sqrt3](https://img.qammunity.org/2022/formulas/mathematics/college/cf5oksdl8792xbygeui7bs4hhf64r7imom.png)
With the sum of figures:
![A= bh+\frac12 xh=6*4\sqrt3 +\frac12*4*4\sqrt3=24\sqrt3+8\sqrt3=32\sqrt3](https://img.qammunity.org/2022/formulas/mathematics/college/9n9kwr7zb4jxihc10myxrb636j8gu2d2fi.png)