16.0k views
2 votes
Find the distance, midpoint, and slope of line AB. A(-2,-1) and B(6,3)

1 Answer

6 votes

Answer:


Slope (m) = (y)/(x)=(1)/(2) = 0.5


Distance (d) = √(x^2+y^2) =√(80) =8.9442719099992


Mindpoint =\left(2,\:1\right)

Explanation:


Slope (m) = (y)/(x)=(1)/(2) = 0.5


0 = arctan((y)/(x) = 26.565051177078^o


Distance (d) = √(x^2+y^2) =√(80) =8.9442719099992

X = 6 – -2 = 8

Y = 3 – -1 = 4

Equation of the line:

y = 0.5x

When x=0, y = 0

When y=0, x = -0

Midpoint:


\mathrm{Midpoint\:of\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad \left((x_2+x_1)/(2),\:\:(y_2+y_1)/(2)\right)


\left(x_1,\:y_1\right)=\left(-2,\:-1\right),\:\left(x_2,\:y_2\right)=\left(6,\:3\right)


=\left((6-2)/(2),\:(3-1)/(2)\right)


=\left(2,\:1\right)

User Blinxen
by
5.0k points