366,311 views
20 votes
20 votes
If


(1)/(x) + (1)/(y) + (1)/(z) = 0
and

{x}^(2) + {y}^(2) + {z}^(2) = 25
, then x + y + z will be? Z​

User Laishiekai
by
3.0k points

2 Answers

15 votes
15 votes

Answer :

  • 5

Explanation:

Given,


{ \longrightarrow \qquad{ { \sf{ (1)/(x) + (1)/(y) + (1)/(z) = 0}}}}


{ \longrightarrow \qquad{ { \sf{ {x}^(2) + {y}^(2) + {z}^(2) = 25 }}}}

To Find :


{ \longrightarrow \qquad{ { \sf{ x + y + z }}}}

Solution :


{ \longrightarrow \qquad{ { \sf{ (1)/(x) + (1)/(y) + (1)/(z) = 0}}}}


{ \longrightarrow \qquad{ { \sf{ (yz + zx + xy)/(xyz) = 0}}}}


{ \longrightarrow \qquad{ { \sf{ {yz + zx + xy} = 0}}}}

Multiplying both sides by 2 :


{ \longrightarrow \qquad{ { \sf{ 2( {yz + zx + xy} )= 0.2}}}}


{ \longrightarrow \qquad{ { \sf{ 2( {yz + zx + xy} )= 0}}}}

We know,


{ \longrightarrow \qquad{ { \sf{ {(x + y + z)}^(2) = {x}^(2) + {y}^(2) + {z}^(2) + 2(xy + yz + zx) }}}}

As, It is given that,


{ \longrightarrow \qquad{ { \sf{ {x}^(2) + {y}^(2) + {z}^(2) = 25 }}}}

and as we get,


{ \longrightarrow \qquad{ { \sf{ 2( {yz + zx + xy} )= 0}}}} \\ \\{ \longrightarrow \qquad{ { \sf{ 2( {xy + yz + zx} )= 0}}}}

Now, We'll substitute it in the formula :


{ \longrightarrow \qquad{ { \sf{ {(x + y + z)}^(2) = 25 + 0 }}}}


{ \longrightarrow \qquad{ { \sf{ {(x + y + z)}^(2) = {25} }}}}


{ \longrightarrow \qquad{ { \sf{ {x + y + z}^{} = √(25) }}}}


{ \longrightarrow \qquad{ { \bf{ \pmb {x + y + z}^{} = {5} }}}}

Therefore,

  • The value of x + y + z is 5 .
User Deafsheep
by
3.3k points
8 votes
8 votes

Answer:

5

Explanation:

We would like to find out the value of
x + y + z from the given equations , which are ;


\longrightarrow (1)/(x)+(1)/(y)+(1)/(z)=0


\longrightarrow \\ x^2+y^2+z^2=25

Now consider ,


\longrightarrow (1)/(x)+(1)/(y)+(1)/(z)=0\\


\longrightarrow (xy + yz + zx )/(xyz )=0\\


\longrightarrow xy + yz + zx = 0(xyz)\\


\longrightarrow xy + yz + zx = 0\\


\longrightarrow 2(xy + yz + zx)=0(2)\\


\longrightarrow 2(xy + yz + zx)=0

Now recall the identity ,


\longrightarrow (a + b + c)^2=a^2+b^2+c^2+2(ab + bc + ca)

Plug in the values ,


\longrightarrow (x+y+z)^2= 25 + 0\\


\longrightarrow (x + y + z )^2=25\\


\longrightarrow (x + y + z)=√(25)\\


\longrightarrow \underline{\underline{\boldsymbol{ x + y + z = 5}}}{}

And we are done !

User Casanova
by
2.6k points