12.7k views
8 votes
If


(1)/(x) + (1)/(y) + (1)/(z) = 0
and

{x}^(2) + {y}^(2) + {z}^(2) = 25
, then x + y + z will be? Z​

2 Answers

9 votes

Answer :

  • 5

Explanation:

Given,


{ \longrightarrow \qquad{ { \sf{ (1)/(x) + (1)/(y) + (1)/(z) = 0}}}}


{ \longrightarrow \qquad{ { \sf{ {x}^(2) + {y}^(2) + {z}^(2) = 25 }}}}

To Find :


{ \longrightarrow \qquad{ { \sf{ x + y + z }}}}

Solution :


{ \longrightarrow \qquad{ { \sf{ (1)/(x) + (1)/(y) + (1)/(z) = 0}}}}


{ \longrightarrow \qquad{ { \sf{ (yz + zx + xy)/(xyz) = 0}}}}


{ \longrightarrow \qquad{ { \sf{ {yz + zx + xy} = 0}}}}

Multiplying both sides by 2 :


{ \longrightarrow \qquad{ { \sf{ 2( {yz + zx + xy} )= 0.2}}}}


{ \longrightarrow \qquad{ { \sf{ 2( {yz + zx + xy} )= 0}}}}

We know,


{ \longrightarrow \qquad{ { \sf{ {(x + y + z)}^(2) = {x}^(2) + {y}^(2) + {z}^(2) + 2(xy + yz + zx) }}}}

As, It is given that,


{ \longrightarrow \qquad{ { \sf{ {x}^(2) + {y}^(2) + {z}^(2) = 25 }}}}

and as we get,


{ \longrightarrow \qquad{ { \sf{ 2( {yz + zx + xy} )= 0}}}} \\ \\{ \longrightarrow \qquad{ { \sf{ 2( {xy + yz + zx} )= 0}}}}

Now, We'll substitute it in the formula :


{ \longrightarrow \qquad{ { \sf{ {(x + y + z)}^(2) = 25 + 0 }}}}


{ \longrightarrow \qquad{ { \sf{ {(x + y + z)}^(2) = {25} }}}}


{ \longrightarrow \qquad{ { \sf{ {x + y + z}^{} = √(25) }}}}


{ \longrightarrow \qquad{ { \bf{ \pmb {x + y + z}^{} = {5} }}}}

Therefore,

  • The value of x + y + z is 5 .
User Ric Santos
by
8.6k points
6 votes

Answer:

5

Explanation:

We would like to find out the value of
x + y + z from the given equations , which are ;


\longrightarrow (1)/(x)+(1)/(y)+(1)/(z)=0


\longrightarrow \\ x^2+y^2+z^2=25

Now consider ,


\longrightarrow (1)/(x)+(1)/(y)+(1)/(z)=0\\


\longrightarrow (xy + yz + zx )/(xyz )=0\\


\longrightarrow xy + yz + zx = 0(xyz)\\


\longrightarrow xy + yz + zx = 0\\


\longrightarrow 2(xy + yz + zx)=0(2)\\


\longrightarrow 2(xy + yz + zx)=0

Now recall the identity ,


\longrightarrow (a + b + c)^2=a^2+b^2+c^2+2(ab + bc + ca)

Plug in the values ,


\longrightarrow (x+y+z)^2= 25 + 0\\


\longrightarrow (x + y + z )^2=25\\


\longrightarrow (x + y + z)=√(25)\\


\longrightarrow \underline{\underline{\boldsymbol{ x + y + z = 5}}}{}

And we are done !

User Olusola Omosola
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories